1. Consider this distance vs. time graph of an object.

Distance vs. Time

$\xrightarrow{\text { Time (s) }}$

During which intervals is the object being acted on by a force?

A I and IV only
B II and IV only
C IV and V only
D I and II only
2. An object's velocity vs. time graph is shown below.

During which interval is there no net force acting on the object?

A I
B II
C III
D IV
3. When forces acting on an object are balanced, which characteristic of motion is zero?

A acceleration
B displacement
C speed
D velocity
4. A spaceship in deep space fires its engines for 3 seconds. Which describes its motion at the end of the 3 seconds when the engines are turned off?

A It continues to accelerate.
B It moves with a constant speed.
C It moves with increasing speed, then the speed gradually decreases.

D It gradually decreases speed.
5. A 20.0-N physics textbook rests on a table. What is the force the table exerts on the textbook?

A $\quad 0 \mathrm{~N}$
B $\quad 9.80 \mathrm{~N}$
C $\quad 20.0 \mathrm{~N}$
D $\quad 40.0 \mathrm{~N}$
6. A sign of uniform density weighing 315 N is supported by a rigid horizontal pipe of negligible mass and a cable that makes a 50.0° angle with the wall.

What is the tension needed for the cable to support the sign?

A $\quad 264 \mathrm{~N}$
B $\quad 365 \mathrm{~N}$
C $\quad 411 \mathrm{~N}$
D $\quad 490 . \mathrm{N}$
7. A 20-kg mass is suspended from two ropes, as shown in the diagram below.

Which of the following relations is true?

A $\quad \mathrm{T}_{1} \cos 30^{\circ}=\mathrm{T}_{2} \cos 60^{\circ}$
B $\quad \mathrm{T}_{1} \sin 30^{\circ}=\mathrm{T}_{2} \sin 60^{\circ}$
C $\quad \mathrm{T}_{1} \cos 30^{\circ}=\mathrm{T}_{2} \sin 60^{\circ}$
D $\quad \mathrm{T}_{1} \sin 30^{\circ}=\mathrm{T}_{2} \cos 60^{\circ}$
8. This graph shows weight versus mass for a group of objects on planet X.

Weight vs. Mass

What is the acceleration due to gravity on planet X ?

A $\quad 0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
B $\quad 2 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
C $\quad 6 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
D $\quad 10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$
9. A $45-\mathrm{kg}$ object is given a net force of 500 N . What is its acceleration?

A $\quad 4.5 \mathrm{~m} / \mathrm{s}^{2}$
B $\quad 6.5 \mathrm{~m} / \mathrm{s}^{2}$
C $\quad 11 \mathrm{~m} / \mathrm{s}^{2}$
D $\quad 45 \mathrm{~m} / \mathrm{s}^{2}$
10. In the drawing below, the identical inclines are frictionless and the mass of cart X is twice that of cart Y .

If the carts are allowed to roll down the inclines, which statement will be true?

A The carts will reach the bottom of the inclines at the same time.

B Cart Y will reach the bottom of the incline in half the time of cart X.

C Cart Y will reach the bottom first but not in half the time of cart X .

D Cart X will reach the bottom of the incline first.
11. A student is sitting at rest in a chair. How does the force that the student exerts on the chair compare to the force the chair exerts on the student?

A the same magnitude and the same direction

B the same magnitude but the opposite direction

C a larger magnitude but the opposite direction

D a smaller magnitude but the same direction
12. A student weighs 200. N. If he is in an elevator that is accelerating upward at $2.00 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, what will be his weight?

A $\quad 159 \mathrm{~N}$
B $\quad 200 . \mathrm{N}$
C $\quad 241 \mathrm{~N}$
D $\quad 400 . \mathrm{N}$
13. A physics student hits a softball with a bat. What is the force exerted on the softball by the bat?

A equal in both size and direction to the force exerted on the bat by the softball

B equal in size but opposite in direction to the force exerted on the bat by the softball

C opposite in direction but much smaller than the force exerted on the bat by the softball

D opposite in direction but much larger than the force exerted on the bat by the softball
14. A 46-kg rigid box is at rest on a horizontal floor. A $22-\mathrm{kg}$ child sits on top of the box. A person pushes horizontally on the box with a force of 90. N. The force of static friction between the box and the floor is 230 N . What is the magnitude of the net force on the box?

A $\quad 0 \mathrm{~N}$
B $\quad 140 \mathrm{~N}$
C $\quad 670 \mathrm{~N}$
D $\quad 990 \mathrm{~N}$
15. The driver of a pickup truck traveling north at $20 \mathrm{~m} / \mathrm{s}$ suddenly stops.

In which direction will a suitcase lying in the center of the frictionless truck bed move?

A I
B II
C III
D IV
16. A mass is being pushed to the right at a constant velocity.

Which vector best represents the frictional force?

A I
B II
C III
D IV
17. At a certain distance from the center of Earth, a satellite experiences a gravitational force, F. If the mass of the satellite was doubled and placed into the same orbit, what gravitational force would the satellite have acting on it?

A $4 F$
B $2 F$
C $\quad F / 2$
D $\quad F / 4$
18. The mass of the sun is $1.99 \times 10^{30} \mathrm{~kg}$. The mass of Earth is $5.97 \times 10^{24} \mathrm{~kg}$. The average distance between them is $1.50 \times 10^{11} \mathrm{~kg}$. What is the gravitational attraction between Earth and the sun?

A $\quad 5.28 \times 10^{11} \mathrm{~N}$
B $\quad 3.52 \times 10^{22} \mathrm{~N}$
C $\quad 5.28 \times 10^{33} \mathrm{~N}$
D $\quad 3.52 \times 10^{44} \mathrm{~N}$

End of Goal 4 Sample Items

In compliance with federal law, including the provisions of Title IX of the Education Amendments of 1972, the Department of Public Instruction does not discriminate on the basis of race, sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, programs, activities, admissions or employment.

Objective: $\quad 4.01$

Determine that an object will continue in its state of motion unless acted upon by a net outside force (Newton's first law of motion, The Law of Inertia).
Thinking Skill: Analyzing Correct Answer: B
$2 \quad$ Objective: 4.01
Determine that an object will continue in its state of motion unless acted upon by a net outside force (Newton's first law of motion, The Law of Inertia).
Thinking Skill: Analyzing Correct Answer: B
$3 \quad$ Objective: 4.01
Determine that an object will continue in its state of motion unless acted upon by a net outside force (Newton's first law of motion, The Law of Inertia).
Thinking Skill: Applying Correct Answer: A

Objective: $\quad 4.01$

Determine that an object will continue in its state of motion unless acted upon by a net outside force (Newton's first law of motion, The Law of Inertia).
Thinking Skill: Applying Correct Answer: B
$5 \quad$ Objective: 4.02
Assess, measure and calculate the conditions required to maintain a body in a state of static equilibrium.
Thinking Skill: Applying Correct Answer: C
$6 \quad$ Objective: 4.02
Assess, measure and calculate the conditions required to maintain a body in a state of static equilibrium.
Thinking Skill: Analyzing Correct Answer: D

$7 \quad$ Objective: 4.02

Assess, measure and calculate the conditions required to maintain a body in a state of static equilibrium.
Thinking Skill: Analyzing Correct Answer: A
$8 \quad$ Objective: 4.03
Assess, measure, and calculate the relationship among the force acting on a body, the mass of the body, and the nature of the acceleration produced (Newton's second law of motion).
Thinking Skill: Analyzing Correct Answer: B

Objective:
 4.03

Assess, measure, and calculate the relationship among the force acting on a body, the mass of the body, and the nature of the acceleration produced (Newton's second law of motion).
Thinking Skill: Applying Correct Answer: C
$10 \quad$ Objective: 4.03
Assess, measure, and calculate the relationship among the force acting on a body, the mass of the body, and the nature of the acceleration produced (Newton's second law of motion).
Thinking Skill: Organizing Correct Answer: A
11 Objective: $\mathbf{4 . 0 4}$
Analyze and mathematically describe forces as interactions between bodies (Newton's third law of motion).
Thinking Skill: Analyzing Correct Answer: B
12 Objective: 4.04
Analyze and mathematically describe forces as interactions between bodies (Newton's third law of motion).
Thinking Skill: Analyzing Correct Answer: C
13 Objective: $\mathbf{4 . 0 4}$
Analyze and mathematically describe forces as interactions between bodies (Newton's third law of motion).
Thinking Skill: Analyzing Correct Answer: B
14 Objective: 4.06
Investigate, measure, and analyze the nature and magnitude of frictional forces.
Thinking Skill: Analyzing Correct Answer: A
15 Objective: 4.06
Investigate, measure, and analyze the nature and magnitude of frictional forces.
Thinking Skill: Analyzing Correct Answer: D
16 Objective: 4.06
Investigate, measure, and analyze the nature and magnitude of frictional forces.
Thinking Skill: Analyzing Correct Answer: A
$17 \quad$ Objective: 4.07
Assess and calculate the nature and magnitude of gravitational forces (Newton's law of universal gravitation). (Approximately half of the items conceptual and half computational)
Thinking Skill: Applying Correct Answer: B

$18 \quad$ Objective: 4.07

Assess and calculate the nature and magnitude of gravitational forces (Newton's law of universal gravitation). (Approximately half of the items conceptual and half computational)
Thinking Skill: Applying Correct Answer: B

